Semiconducting graphene nanoribbon retains band gap on amorphous or crystalline SiO2
نویسنده
چکیده
Related Articles Excitation of discrete and continuous spectrum for a surface conductivity model of graphene J. Appl. Phys. 110, 114305 (2011) Abnormal electronic transport and negative differential resistance of graphene nanoribbons with defects Appl. Phys. Lett. 99, 192102 (2011) The effect of doping on the energetics and quantum conductance in graphene nanoribbons with a metallocene adsorbate J. Chem. Phys. 135, 124708 (2011) The destruction of Landau levels in graphene nanoribbons by magnetic modulation J. Appl. Phys. 110, 063718 (2011) Half-metallicity and spin-contamination of the electronic ground state of graphene nanoribbons and related systems: An impossible compromise? J. Chem. Phys. 135, 104704 (2011)
منابع مشابه
Interfaces Within Graphene Nanoribbons
We study the conductance through two types of graphene nanostructures: nanoribbon junctions in which the width changes from wide to narrow, and curved nanoribbons. In the wide-narrow structures, substantial reflection occurs from the wide-narrow interface, in contrast to the behavior of the much studied electron gas waveguides. In the curved nanoribbons, the conductance is very sensitive to det...
متن کاملTight- binding study of electronic band structure of anisotropic honeycomb lattice
The two-dimensional structure of graphene, consisting of an isotropic hexagonal lattice of carbon atoms, shows fascinating electronic properties, such as a gapless energy band and Dirac fermion behavior of electrons at fermi surface. Anisotropy can be induced in this structure by electrochemical pressure. In this article, by using tight-binding method, we review anisotropy effects in the elect...
متن کاملEffect of Nanoribbon Width and Strain on the Electronic Properties of the WS2 Nanoribbon
Materials of the general form MX2 (transition metal dichalcogenides) have generated a lot of interest recently. They can form nanoribbons like graphene and such nanoribbons have versatile electronic structures and can be metallic or semiconducting by changing the edges of the ribbon. The electronic properties of such materials are not fully understood till now. In this paper we investigate one ...
متن کاملElectronic structure and stability of semiconducting graphene nanoribbons.
We present a systematic density functional theory study of the electronic properties, optical spectra, and relative thermodynamic stability of semiconducting graphene nanoribbons. We consider ribbons with different edge nature including bare and hydrogen-terminated ribbons, several crystallographic orientations, and widths up to 3 nm. Our results can be extrapolated to wider ribbons providing a...
متن کاملElectronic and transport properties of kinked graphene
Local curvature, or bending, of a graphene sheet is known to increase the chemical reactivity presenting an opportunity for templated chemical functionalisation. Using first-principles calculations based on density functional theory (DFT), we investigate the reaction barrier reduction for the adsorption of atomic hydrogen at linear bends in graphene. We find a significant barrier lowering (≈15%...
متن کامل